двух функций (принцип суперпозиций) (5.3) из которых первая функция f1(t) представляет собой частное решение заданного дифференциального уравнения, а вторая f2(t) - общее, удовлетворяет однородному уравнению (правая часть равна нулю). Частное решение выражает принужденный режим, задаваемый источником. Если источник есть постоянная величина или периодическая функция времени, тогда такой режим будет одновременно и установившемся. Общее решение выражает поведение цепи при отсутствии внешних источников. Функции, определяющие общее решение, называют свободными составляющими. Все сказанное можно с учетом (5.3) отразить в общепринятой форме запаси, например, для переходного тока i=iCв+iПр напряжения u=uСв+uПр и сразу подчеркнуть, что законом коммутации должно удовлетворять только полное решение. Переходные процессы будем исследовать классическим методом, который заключается в интегрировании дифференциальных уравнений, связывающих токи и напряжения цепи. В результате интегрирования появляться
аренда автобуса
Используются технологии uCoz